Cooperative Particle Swarm Optimization in Distance-Based Clustered Groups
نویسندگان
چکیده
TCPSO (Two-swarm Cooperative Particle Swarm Optimization) has been proposed by Sun and Li in 2014. TCPSO divides the swarms into two groups with different migration rules, and it has higher performance for high-dimensional nonlinear optimization problems than traditional PSO and other modified method of PSO. This paper proposes a particle swarm optimization by modifying TCPSO to avoid inappropriate convergence onto local optima. The quite feature of the proposed method is that two kinds of subpopulations constructed based on the scheme of TCPSO are divided into some clusters based on distance measure, k -means clustering method, to maintain both diversity and centralization of search process are maintained. This paper conducts numerical experiments using several types of functions, and the experimental results indicate that the proposed method has higher performance than the TCPSO for large-scale optimization problems.
منابع مشابه
Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کاملFuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کاملRELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD
A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...
متن کاملPopulation Density Particle Swarm Optimized Improved Multi-robot Cooperative Localization Algorithm
In light of the accuracy of particle swarm optimization-particle filter (PSO-PF) inadequate for multi-robot cooperative positioning, the paper presents population density particle swarm optimization-particle filter (PDPSO-PF), which draws cooperative coevolutionary algorithm in ecology into particle swarm optimization. By taking full account of the competitive relationship between the environme...
متن کاملPareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm
One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017